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ABSTRACT: Protein folding is a classic grand challenge
that is relevant to numerous human diseases, such as protein
misfolding diseases like Alzheimer's disease. Solving the
folding problem will ultimately require a combination of
theory, simulation, and experiment, with theory and simulation
providing an atomically detailed picture of both the thermo-
dynamics and kinetics of folding and experimental tests
grounding these models in reality. However, theory and
simulation generally fall orders of magnitude short of
biologically relevant time scales. Here we report significant
progress toward closing this gap: an atomistic model of the
folding of an 80-residue fragment of the λ repressor protein
with explicit solvent that captures dynamics on a10milliseconds
time scale. In addition, we provide a number of predictions
that warrant further experimental investigation. For example,
our model's native state is a kinetic hub, and biexponential
kinetics arises from the presence of many free-energy basins
separated by barriers of different heights rather than a single
low barrier along one reaction coordinate (the previously
proposed incipient downhill folding scenario).

Understanding protein folding is a long-standing problem
with important medical applications, such as elucidating the

role of protein misfolding in disorders like Alzheimer's disease.
Solving the folding problemwill ultimately require a combination of
theory, simulation, and experiment, with theory and simulation
providing an atomically detailed picture of both the thermo-
dynamics and kinetics of folding and experimental tests ground-
ing these models in reality. However, modeling long-time-scale
dynamics (e.g., microseconds, milliseconds, and beyond) with
sufficient statistical accuracy and chemical detail to make a
quantitative connection with experiments is extremely challen-
ging. Much progress has been made with small, fast-folding
proteins (less than 40 residues and 1 ms folding time scales1),
but can the methods used be scaled to larger, slower systems?
Here we report significant progress in this direction: an atomistic
model of the folding of an 80-residue fragment of the λ repressor
protein (λ6-85) with explicit solvent that captures dynamics on a
10 milliseconds time scale.

This advance builds upon a growing body of work on describing
molecular kinetics with network models called Markov state
models (MSMs). MSMs are discrete-time master equation models
that essentially serve as maps of a molecule's conformational
space.1-3 The states in an MSM come from kinetic clustering of
atomistic simulations (i.e., grouping together conformations that
can interconvert rapidly into what is called a metastable state).

Thus, these models are an important advance over previous
approaches, such as diffusion-collision models,4,5 as an MSM's
states are derived from dynamics in detailed simulations rather
than human intuition. One can exploit the kinetic definition of
states in anMSM to perform simulations efficiently6-8 and make
a direct connection to experiments.9-11 For example, we have
successfully used MSMs for all-atom ab initio structure predic-
tion of small systems such as the villin headpiece (35 residues,
microsecond folding time).9 Noe et al.10 predicted the relaxation
kinetics of a PinWW domain (34 residues, microsecond folding
time), and Voelz et al.11 did the same for NTL9 (39 residues,
millisecond folding time).

To test whether the MSM approach can be scaled to larger
systems, we built MSMs for the D14A mutant of λ6-85

(Figure 1A).12 D14A has the following mutations: D14A, Y22W,
Q33Y, G46A, and G48A. This system was chosen because it is
twice as large as the small model systems that have been studied
with MSMs to date yet surprisingly is still reported to fold on a
10 μs time scale.12 Since molecular dynamics (MD) simulations
can now reach time scales of tens of microseconds on a routine
basis, it should be feasible to run many folding simulations for
this system. Future comparison with other large, slower-folding
proteins could also help us to understand what properties of
D14A allow it to fold as quickly as ultrafast folding proteins less
than half its size.

MSMs forD14A.We built atomically detailed networkmodels
(MSMs) for D14A from 3265 MD simulations with explicit
solvent. Each trajectory was up to 1 μs in length, for an aggregate
of 1.3 ms of simulation;an enormous data set given that most
simulation studies are based on only nanoseconds to microseconds
of data. These simulations were started from six initial config-
urations drawn from replica-exchange simulations in implicit
solvent.13 One was nativelike, three were partially unfolded, and
two had β-sheets. A more detailed description of our simulations
is given in the Supporting Information (SI).

The highest-resolution MSM we created for D14A has 30 000
microstates and is appropriate for making quantitative connections
with experiments because of its great structural and temporal
detail. A low-resolution model with 5000 macrostates was created
from the high-resolution MSM to facilitate interpretation of the
model. More details on our use of the MSMBuilder package14 to
construct these models are given in the SI. While no single
trajectory visited every state, these MSMs were able to capture
long-time-scale dynamics through the use of overlap between our
simulations, which allowed them to be stitched together in a
physically and statistically meaningful way (see Figure S1 in the
SI for a 1 s long trajectory). Examination of the implied time
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scales of the microstate MSM shows that a 5 ns lag time yields
Markovian behavior (Figures S2-S4).

The Native State. One of the first observations from our
coarse-grained MSM is that our model's native state (Figure 2A)
differs from the crystal structure (Figure 1A) in helix five. The
crystal structure is a highly metastable state (Figure 2H), which
we call the crystallographic state. However, in the native state of
our model, helix five is unraveled and packed against the side of
the remainder of the protein (Figure 2A). Figure 2 also shows
that helix five is unstructured in many of the other highly
populated states of our model.

While this difference could be due to force-field errors, we
argue that helix five is actually likely to be unstructured in
solution given the origins of this model system for folding.
Full-length λ repressor is a 236-residue transcription factor that
binds to DNA as a dimer, maintaining the λ phage in the lysogenic
state. Figure 1B shows the crystal structure of a 92-residue
fragment that can still dimerize and bind to DNA.15,16 On the
basis of this structure, Huang and Oas17 selected an 80-residue
fragment (λ6-85) that favors the monomeric state (Figure 1A),
making it appropriate for folding studies. In the 92-residue fragment,
helix five is extended by seven residues and forms important
packing interactions between the two members of the dimer.
These extra interactions likely stabilize helix five. Truncating the

sequence to favor the monomer could destabilize the fifth helix,
leading to a lack of structure and a strong propensity either to fill
the hydrophobic cavity normally occupied by the corresponding
helix of the other member of the dimer or to adopt one of a
number of the other well-populated, unstructured conformations
shown in Figure 2.

There is also a reasonable amount of experimental data
corroborating our hypothesis that helix five is unstructured in
solution. First, the stability of this system seems to be insensitive
to mutations in helix five.13 A crystal structure for λ6-85 also has
high B factors in helix five.18 Therefore, it is plausible that helix
five is stabilized by packing interactions in this crystal but is still
intrinsically unstable and likely to be more unstructured in
solution.

Further support for our hypothesis comes from theoretical
studies. For example, helix five has negligible helical propensity
according to Agadir19 (Figure S5). Similar results were also found
in a Go model study, where helix five tended to undock from the
rest of the protein.20However, thosemodels did not include non-
native interactions, so helix five was not found to unravel or pack
against the protein in that work.

β-Sheet States. Figure 2 also shows that a number of the most
populated states in our model have significant β-sheet content.
The prediction of β-sheet states in the unfolded ensemble is
somewhat surprising for a helical protein; however, experiments
have shown that the unfolded and denatured states of many
systems can have significant populations of compact, β-sheet
structures yet still display the random coil statistics characteristic
of expanded conformations.21,22 Thus, our prediction of compact
β-sheet structures is not unreasonable.

Folding Kinetics. While the experimentally reported folding
time for D14A is 10 μs, analysis of our high-resolution MSM
revealed the presence of microscopic transitions on time scales
up to 10 ms. These time scales were preserved in subsamples of the
data set and an independent data set run at a lower temperature
(Figures S3 and S4), indicating that they are a robust feature of
the simulated system.

Analysis of our coarse-grained MSM revealed that this long
time scale corresponds to exchange between the compactβ-sheet
structures in the unfolded ensemble and the crystallographic state
through multiple parallel pathways (Figure 3 and Figure S6). A
more detailed view of one of these pathways and portions thereof
are shown in Figure 4 and Figure S7. In this particular pathway,
the compact β-sheet structure first expands (A-E), breaking
apart the β-sheets. Next, helices 1 and 4 begin to form, and this is
followed by collapse into a nativelike topology (F andG). Finally,
the remaining helices form (G and H). The ability to extract these
detailed pathways highlights one of the advantages ofMSMs over
conventional analysis techniques such as projections of the free-
energy surface, which tend to oversimplify folding and paint
different pictures depending on the order parameters chosen
(Figures S8 and S9 and ref 20). However, one must take care in
interpreting these pathway diagrams because they show the net
flux from one state to another, leaving out the backward steps and
excursions that molecules in solution make as they stochastically
explore the conformational space.

One possible explanation for the difference between our
simulation results and experiment is that the experimental probe
used to monitor folding is not sensitive to the slow transition
from compact β-sheet structures to the crystallographic state. To
test this hypothesis, we used our MSM to calculate the macro-
scopic rate measured experimentally by modeling the relaxation

Figure 1. (A) Model of λ6-85 taken from (B). The Trp22-Tyr33 pair
that has been monitored in T-jump experiments is shown as space-filled.
(B) Crystal structure of the λ1-92 dimer bound to DNA (PDB entry
1LMB).

Figure 2. The nine most populated states from our coarse-grained
MSM with their equilibrium probabilities.
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of a surrogate for the Trp22-Tyr33 quenching interaction
measured in temperature-jump (T-jump) experiments (Figure S10).
We also calculated the relaxation of the CR root-mean-square
deviation (rmsd) from the crystal structure to test whether a
more global metric could capture longer time scales than the

experimental probe, which could capture only local relaxations
(Figure S10). Both exhibit biexponential relaxation (a character-
istic of D14A that has been used to argue that it is a downhill
folder) and have similar time scales, but their slow phase is ∼2
orders of magnitude slower than in experiment (1 ms vs 10 μs).

This result suggests that this slow transition is not present in
solution because the experimental probe would have captured it
if it were. Further support comes from the fact that ignoring
simulations started from β-sheet structures yielded better agree-
ment between the simulations and experiment (Figure S11).
First, the Trp22-Tyr33 surrogate has a 1 μs fast phase and a
4.3 μs slow phase, in reasonable agreement with the experimental
values of 2 and 10 μs.12 Second, the rmsd relaxes on different
time scales in this case, consistent with the observed probe-
dependent kinetics.23,24

While it is natural to consider the potential flaws in a force field
when confronted with a discrepancy between simulation and
experiment, we suggest that there are alternative possibilities as
well. The folding rate of λ6-85 is known to be highly sensitive to
solvent viscosity.25,26 For example, one variant of λ6-85 folds on a
210 μs time scale in the absence of denaturant but a 5 ms time
scale in the presence of only 0.5 M GuHCL.26 Force-field errors
are known to destabilize proteins, so it is possible that our
simulated system is more like D14A in mild denaturant than it is
like D14A in aqueous solution. It is also still possible that future
experiments will reveal the presence of a 10 ms time scale for
D14A. Indeed, onemight expectD14A, with its sizable hydrophobic
core, to fold on longer time scales since the wild-type villin
headpiece (which is less than half the size of D14A and barely has
a hydrophobic core) is also reported to fold in just under 10 μs.27

Fully resolving this issue will likely require more experiments
and simulations to yield more points of comparison between
simulation and experiment. Regardless of the outcome, our work
shows that MSMs built from atomistic simulations can now
sample 10 ms time scales, reproduce qualitative phenomena such
as biexponential relaxation, and possibly even provide quantitative
agreement with experiment. Moreover, the ability to make such
direct comparisons on long time scales opens the door to further
improvements of atomistic models used in MD simulations.

A Native Hub. The biexponential relaxation of D14A and
other variants of λ6-85 has previously been attributed to incipient
downhill folding. The incipient downhill folding model is similar
to the more conventional two-state model often used to describe
folding but has a lower barrier (on the order of kBT) separating
the folded and unfolded states (Figure S12A). As a result, there is
believed to be a moderate population of proteins on top of the
barrier that can slide downhill into the native state, giving rise to a
fast phase, in addition to an unfolded population that must cross
the barrier before folding, giving rise to the slow phase.

Projections of the free energy onto a kinetically meaningful
order parameter (pfold, the probability of folding before unfolding

28)
are consistent with incipient downhill folding. When the full data
set was used, such projections appeared to be two-state, but when
simulations started from the compact β-sheet conformations
were removed (thereby yielding better agreementwith experiment),
the barrier between the folded and unfolded states was greatly
reduced, consistent with incipient downhill folding (Figure S13).

Further analysis of our MSM, however, indicated that the
biexponential relaxation of D14A may be due to metastability
and a hublike native state rather than incipient downhill folding.
When a single non-native state was chosen as the starting point
for pfold calculations, the other non-native states actually appeared to

Figure 3. Coarse-grained view of the 10 ms time scale transition in
which the size of the circle representing each state is proportional to the
logarithm of that state's equilibrium probability and each arrow width is
proportional to the logarithm of the flux along the corresponding edge
(see the key in the figure). The states are laid out in terms of the average
number of β-sheet residues (calculated from 100 random conformations
from each state) and the value of pfold (the probability of reaching state
l before state a).

Figure 4. Representative high-resolution pathway that occurs on a
10 ms time scale, with pfold values (probabilities of reaching state H before
state A) shown. The proportion of native contacts is also given in
parentheses as an estimate of how nativelike the topology is. Relative
contact orders for each state are given in Table S1.
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have pfold values near 1 (i.e., they appeared on the native side of
the projection), indicating that the folding is more complex than
the incipient downhill folding scenario. The MSM revealed that
there aremanymetastable states separated by barriers of different
heights (e.g., there is reasonable variability in the transition times
between states), and the convolution of these dynamics gives rise
to biexponential relaxation and fast folding. These states are
arranged in such a way that the native state acts as a kinetic hub, as
has been observed for a number of smaller systems.29

A first hint that D14A may also have a native hub comes from
the large number of connections to our native state (Figure S12).
The native state in our model makes direct connections to 98% of
the non-native states, while non-native states connect to only 0.1%of
the other states on average. Moreover, the mean first-passage times
(MFPTs) to the native state were typically found to be∼10 times
shorter than the MFPTs between non-native states, as shown in
Figure S14, and this held regardless of whether the β-sheet simula-
tions were included in the analysis. Therefore, molecules in non-
native states can generally fold faster than they can transition to
other non-native states. The fastest way to transition between two
randomly selected non-native states is then to fold and unfold.
The large number of folding pathways that result from this
topology is hidden by projections of the free energy onto pfold.

Conclusions. The combination of simulations andMSMs can
now access∼10milliseconds time scales for moderately large (∼80
residue) systems with explicit solvent, greatly increasing the
common ground between simulation and experiment (the pre-
vious state of the art was 1 ms time scales for ∼40 residue
proteins in implicit solvent). The ability of our MSMs to capture
biexponential kinetics also indicates that proteins previously
designated as incipient downhill folders actually have many
barriers of differing heights. In addition, our model leads to a
number of predictions for D14A: (1) helix five unfolds and fills a
hydrophobic pocket in the native state and lacks structure in
other well-populated states; (2) there is significant β-sheet
structure in the unfolded ensemble; (3) there are structural
rearrangements on 10 ms time scales that were not detected in
past experiments, or alternatively, the simulated system reflects
dynamics in mild denaturant; and (4) the native state acts as a
kinetic hub. Our ability to reconcile these observations with
existing experiments suggests that more experimental data are
necessary to provide a detailed description of how D14A and
other variants of λ6-85 fold.We suggest thatMSMs could be used
to help design such experiments and lead to important new
insights into folding or, at the very least, provide more data for
refining existing force fields and improving the agreement
between simulation and experiment.
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